Composite Quantile Regression for Nonparametric Model with Random Censored Data
نویسندگان
چکیده
The composite quantile regression should provide estimation efficiency gain over a single quantile regression. In this paper, we extend composite quantile regression to nonparametric model with random censored data. The asymptotic normality of the proposed estimator is established. The proposed methods are applied to the lung cancer data. Extensive simulations are reported, showing that the proposed method works well in practical settings.
منابع مشابه
Bayesian Nonparametric Modeling in Quantile Regression
We propose Bayesian nonparametric methodology for quantile regression modeling. In particular, we develop Dirichlet process mixture models for the error distribution in an additive quantile regression formulation. The proposed nonparametric prior probability models allow the data to drive the shape of the error density and thus provide more reliable predictive inference than models based on par...
متن کاملNonparametric quantile regression for twice censored data
We consider the problem of nonparametric quantile regression for twice censored data. Two new estimates are presented, which are constructed by applying concepts of monotone rearrangements to estimates of the conditional distribution function. The proposed methods avoid the problem of crossing quantile curves. Weak uniform consistency and weak convergence is established for both estimates and t...
متن کاملEditorial for the special issue on quantile regression and semiparametric methods
Quantile regression and other semiparametric models have been widely recognized as important data analysis tools in statistics and econometrics. Thesemethods donot rely strictly onparametric likelihoodbut avoid the curse of dimensionality associated with many nonparametric models. The journal Computational Statistics and Data Analysis regularly publishes papers on these semiparametric methods, ...
متن کاملQuantile Estimation of Non-Stationary Panel Data Censored Regression Models
We propose an estimation procedure for (semiparametric) panel data censored regression models in which the error terms may be subject to general forms of non-stationarity, thus permitting heteroscedasticity over time. The proposed estimator exploits a weak structural form imposed on the individual speci ̄c e®ect. This is in contrast to the estimators introduced in Honor¶e(1992) where the individ...
متن کاملAn Integrated Maximum Score Estimator for a Generalized Censored Quantile Regression Model
Quantile regression techniques have been widely used in empirical economics. In this paper, we consider the estimation of a generalized quantile regression model when data are subject to fixed or random censoring. Through a discretization technique, we transform the censored regression model into a sequence of binary choice models and further propose an integrated smoothed maximum score estimat...
متن کامل